Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 1 - Limits and Their Properties - Problem Solving - Page 94: 8

Answer

The values of the constant $a$, such that the following function is continuous for all real numbers., $$ f(x)=\left\{\begin{array}{ll}{\frac{a x}{\tan x},} & {x \geq 0} \\ {a^{2}-2,} & {x<0}\end{array}\right. $$ are $$ a=-1,2 $$

Work Step by Step

$$ f(x)=\left\{\begin{array}{ll}{\frac{a x}{\tan x},} & {x \geq 0} \\ {a^{2}-2,} & {x<0}\end{array}\right. $$ since $f(x)$ is continuous then $$ \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(a). $$ So $$ \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(a^{2}-2\right)=a^{2}-2 $$ and $$ \begin{split} \lim _{x \rightarrow 0^{-}} f(x) &=\lim _{x \rightarrow 0^{+}} \frac{a x}{\tan x} \\ &\quad\quad\quad\left[\text {The fraction part is } \frac{0}{0} \text { so we can use L'Hospital's } \right] \\ & =\lim _{x \rightarrow 0^{+}} \frac{a }{\sec^{2}x}\\ &=a \end{split} $$ Therefore, we have $$ a^{2}-2=a $$ $\Rightarrow$ $$ a^{2}-a-2=0 \Rightarrow (a-2)(a+1)=0 \Rightarrow a=-1,2 $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.