Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 486: 83

Answer

$$2 - \frac{2}{{\sqrt e }}$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\frac{{dx}}{{\sqrt {{e^x}} }}} \cr & {\text{radical property }}\sqrt {{a^m}} = {a^{m/2}} \cr & = \int_0^1 {\frac{{dx}}{{{e^{x/2}}}}} \cr & {\text{write with negative exponent}} \cr & = \int_0^1 {{e^{ - x/2}}} dx \cr & {\text{use }}\int {{e^{ - ax}}dx = - \frac{1}{a}{e^{ - ax}} + C} \cr & = \left[ {\frac{1}{{ - 1/2}}{e^{ - x/2}}} \right]_0^1 \cr & = \left[ { - \frac{2}{{{e^{x/2}}}}} \right]_0^1 \cr & {\text{part 1 of fundamental theorem of calculus}} \cr & = - \frac{2}{{{e^{1/2}}}} + \frac{2}{{{e^{0/2}}}} \cr & {\text{simplify}} \cr & = 2 - \frac{2}{{{e^{1/2}}}} \cr & = 2 - \frac{2}{{\sqrt e }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.