Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.1 Rectangular Coordinates In 3-Space; Spheres; Cylindrical Surfaces - Exercises Set 11.1 - Page 773: 55

Answer

We have proven that $P$ lies on a sphere.

Work Step by Step

\[ P\left(z_{0}, y_{0}, x_{0}\right)=( a \cos \phi, a \sin \phi \sin \theta, a \sin \phi \cos \theta) \] Notice that \[ \begin{aligned} z_{0}^{2}+y_{0}^{2}+x_{0}^{2} &=a^{2} \cos ^{2} \phi+a^{2} \sin ^{2} \phi \sin ^{2} \theta+a^{2} \sin ^{2} \phi \cos ^{2} \theta \\ &=a^{2} \sin ^{2} \phi\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+a^{2} \cos ^{2} \phi \\ &=a^{2} \cos ^{2} \phi+a^{2} \sin ^{2} \phi \\ &=a^{2}\left(\cos ^{2} \phi+\sin ^{2} \phi\right) \\ &=a^{2} \end{aligned} \] so we have used that $1=\sin ^{2} x+\cos ^{2} x$ for all real $x$. Since $a^{2}=z_{0}^{2}+y_{0}^{2}+x_{0}^{2}, P$ lies on the sphere \[ a^{2}=z^{2}+y^{2}+x^{2} \] Originally centered with radius $a=r$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.