Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.8 - Exponential Growth and Decay - 3.8 Exercises - Page 246: 19

Answer

(a) 64.48 kPa (b) 39.91 kPa

Work Step by Step

(a) $\frac{dP}{dh} = kP$ The solution to this equation is: $P(h) = P(0)e^{kh}$ We can find $k$: $P(h) = P(0)e^{kh}$ $P(1000) = 101.3~e^{1000k} = 87.14$ $e^{1000k} = \frac{87.14}{101.3}$ $1000k = ln(\frac{87.14}{101.3})$ $k = \frac{ln(\frac{87.14}{101.3})}{1000}$ $k = -0.00015057$ Then: $P(h) = P(0)e^{-0.00015057~h}$ We can find the pressure $P$ when $h = 3000~m$: $P(h) = P(0)e^{-0.00015057~h}$ $P(3000) = 101.3~e^{(-0.00015057)~(3000)}$ $P(3000) = 64.48$ (b) We can find the pressure $P$ when $h = 6187~m$: $P(h) = P(0)e^{-0.00015057~h}$ $P(6187) = 101.3~e^{(-0.00015057)~(6187)}$ $P(6187) = 39.91$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.