Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.7 - Rates of Change in the Natural and Social Sciences - 3.7 Exercises - Page 238: 37

Answer

$\frac{dt}{dc}=\frac{3\sqrt {9c^2-8c}+ (9c-4)}{\sqrt {9c^2-8c}.(3c+\sqrt {9c^2-8c})}$

Work Step by Step

Given : $t=ln(\frac{3c+\sqrt {9c^2-8c}}{2})$ $t=ln(3c+\sqrt {9c^2-8c})-ln2$ Taking differentiate w.r.t $c$. $\frac{dt}{dc}=\frac{d}{dc}(ln(3c+\sqrt {9c^2-8c})-ln2)$ $=\frac{d}{dc}ln(3c+\sqrt {9c^2-8c})-\frac{d}{dc}(ln2)$ $=\frac{1}{3c+\sqrt {9c^2-8c}}\frac{d}{dc}(3c+\sqrt {9c^2-8c})-\frac{d}{dc}(ln2)$ $=\frac{1}{3c+\sqrt {9c^2-8c}}(3+\frac{1}{2}(9c^2-8c)^{\frac{-1}{2}}\frac{d}{dc}(9c^2-8c)-0)$ $=\frac{1}{3c+\sqrt {9c^2-8c}}(3+\frac{1}{2}(9c^2-8c)^{\frac{-1}{2}}(18c-8))$ $=\frac{3+\frac{(18c-8)}{2\sqrt {9c^2-8c}}}{3c+\sqrt {9c^2-8c}}$ $=\frac{3+\frac{2(9c-4)}{2\sqrt {9c^2-8c}}}{3c+\sqrt {9c^2-8c}}$ $=\frac{3+\frac{(9c-4)}{\sqrt {9c^2-8c}}}{3c+\sqrt {9c^2-8c}}$ $=\frac{\frac{3\sqrt {9c^2-8c}+ (9c-4)}{\sqrt {9c^2-8c}}}{3c+\sqrt {9c^2-8c}}$ $\frac{dt}{dc}=\frac{3\sqrt {9c^2-8c}+ (9c-4)}{\sqrt {9c^2-8c}.(3c+\sqrt {9c^2-8c})}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.