Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.7 - Rates of Change in the Natural and Social Sciences - 3.7 Exercises - Page 237: 28

Answer

$a = 140$ $b = 6$ In the long run, the yeast population will be 140

Work Step by Step

$f(t) = \frac{a}{1+b~e^{-0.7t}}$ We can find an expression for $f'(t)$: $f(t) = \frac{a}{1+b~e^{-0.7t}}$ $f'(t) = \frac{-(a)(b~e^{-0.7t})(-0.7)}{(1+b~e^{-0.7t})^2}$ $f'(t) = \frac{0.7ab~e^{-0.7t}}{(1+b~e^{-0.7t})^2}$ It is given that $f(0) = 20$ and $f'(0) = 12$ $f(0) = \frac{a}{1+b~e^{-0.7(0)}} = \frac{a}{1+b} = 20$ $a = 20(1+b)$ We can find the value of $b$: $f'(0) = \frac{0.7ab~e^{-0.7(0)}}{(1+b~e^{-0.7(0)})^2} = \frac{0.7ab}{(1+b)^2} = 12$ $\frac{0.7b~[20(1+b)]}{(1+b)^2} = 12$ $\frac{14b}{1+b} = 12$ $14b = 12b+12$ $2b = 12$ $b = 6$ We can find the value of $a$: $a = 20(1+b)$ $a = 20(1+6)$ $a = 140$ We can find the value of $f(t)$ in the long run: $\lim\limits_{t \to \infty}f(t) = \lim\limits_{t \to \infty}\frac{a}{1+b~e^{-0.7t}}$ $\lim\limits_{t \to \infty}f(t) = \frac{a}{1+b~(0)}$ $\lim\limits_{t \to \infty}f(t) = a$ $\lim\limits_{t \to \infty}f(t) = 140$ In the long run, the yeast population will be 140
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.