Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.7 - Rates of Change in the Natural and Social Sciences - 3.7 Exercises - Page 236: 18

Answer

(a) (i) $172\pi~\mu m^2$ (ii) $121.3\pi~\mu m^2$ (iii) $102\pi~\mu m^2$ (b) When $r = 5~\mu m$, the instantaneous rate of change of the volume with respect to the radius is $~~100\pi~\mu m^2$ (c) The rate of change of the volume with respect to the radius is equal to the surface area.

Work Step by Step

(a) $V(r) = \frac{4}{3}\pi~r^3$ (i) $V(5) = \frac{4}{3}\pi~(5)^3 = \frac{500}{3}\pi~\mu m^3$ $V(8) = \frac{4}{3}\pi~(8)^3 = \frac{2048}{3}\pi~\mu m^3$ We can find the average rate of change: $\frac{\Delta V}{\Delta r} = \frac{1548\pi/3}{8-5} = 172\pi~\mu m^2$ (ii) $V(5) = \frac{4}{3}\pi~(5)^3 = \frac{500}{3}\pi~\mu m^3$ $V(6) = \frac{4}{3}\pi~(6)^3 = \frac{864}{3}\pi~\mu m^3$ We can find the average rate of change: $\frac{\Delta V}{\Delta r} = \frac{364\pi/3}{6-5} = 121.3\pi~\mu m^2$ (iii) $V(5) = \frac{4}{3}\pi~(5)^3 = \frac{500}{3}\pi~\mu m^3$ $V(5.1) = \frac{4}{3}\pi~(5.1)^3 = \frac{530.6}{3}\pi~\mu m^3$ We can find the average rate of change: $\frac{\Delta V}{\Delta r} = \frac{30.6\pi/3}{5.1-5} = 102\pi~\mu m^2$ (b) $V(r) = \frac{4}{3}\pi ~r^3$ $\frac{dV}{dr} = 4\pi~r^2$ We can find the instantaneous rate of change when $r = 5~\mu m$: $\frac{dV}{dr} = 4\pi~r^2 = 4\pi(5)^2 = 100\pi~\mu m^2$ When $r = 5~\mu m$, the instantaneous rate of change of the volume with respect to the radius is $~~100\pi~\mu m^2$ (c) The surface area of a circle is $4\pi~r^2$ Since $\frac{dV}{dr} = 4\pi~r^2$, the rate of change of the volume with respect to the radius is equal to the surface area. Suppose the original volume of a circle is $\frac{4}{3}\pi~r^3$ After we increase the radius by $\Delta r$, the new volume is $\frac{4}{3}\pi~(r+\Delta r)^3$ We can find the change in volume: $\Delta V = \frac{4}{3}\pi~(r+\Delta r)^3-\frac{4}{3}\pi~r^3$ $\Delta V = \frac{4}{3}\pi~r^3+4\pi~r^2~(\Delta r)+4\pi~r~(\Delta r)^2+\frac{4}{3}\pi(\Delta r)^3-\frac{4}{3}\pi~r^2$ $\Delta V = 4\pi~r^2~(\Delta r)+4\pi~r~(\Delta r)^2+\frac{4}{3}\pi(\Delta r)^3$ $\Delta V \approx 4\pi~r^2~(\Delta r)$ Note that we can say this because $4\pi~r~(\Delta r)^2+\frac{4}{3}\pi(\Delta r)^3 \approx 0$ Then: $\Delta V \approx 4\pi~r^2~(\Delta r)$ $\frac{\Delta V}{\Delta r} \approx 4\pi~r^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.