Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.5 - Implicit Differentiation - 3.5 Exercises - Page 216: 58

Answer

the value of the number a is $\sqrt[3]{3}$

Work Step by Step

Let $$ y=(x+c)^{-1} $$ $\Rightarrow $ $$ y^{\prime}=-(x+c)^{-2} $$ and $$ y=a(x+k)^{1 / 2}$$ $ \Rightarrow$ $$ y^{\prime}=\frac{1}{3} a(x+k)^{-2 / 3}$$ so the curves are orthogonal if the product of the slopes is -1, that is, $$\frac{-1}{(x+c)^{2}} \cdot \frac{a}{3(x+k)^{2 / 3}}=-1 $$ $ \Rightarrow $ $$ \begin{aligned} a & =3(x+c)^{2}(x+k)^{2 / 2}\\ & \ \ \ \ \left[\text { since } y^{2}=(x+c)^{-2} \text {and } y^{2}=a^{2}(x+k)^{2 / 3}\right]\\ &=3\left(\frac{1}{y}\right)^{2}\left(\frac{y}{a}\right)^{2}\\ \end{aligned} $$ $ \Rightarrow $ $$ a=3\left(\frac{1}{a^{2}}\right) \Rightarrow a^{3}=3 \Rightarrow a=\sqrt[3]{3}$$. Hence the value of the number a is $\sqrt[3]{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.