Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.4 - The Chain Rule - 3.4 Exercises - Page 209: 102

Answer

See the explanation.

Work Step by Step

Let $F=f\circ g$. Define $u=g(x)$. Then, $F=f(u)$. Find $F'(x)$: $F'(x)=\frac{dF}{dx}$ (Use the Chain Rule) $=\frac{dF}{du}\cdot \frac{du}{dx}$ $=f'(u)\cdot g'(x)$ $=f'(g(x))\cdot g'(x)$ Find $F''(x)$: $F''(x)=\frac{dF'}{dx}$ $=\frac{d}{dx}(f'(g(x))\cdot g'(x))$ (Use the Product Rule) $=\frac{d}{dx}(f'(g(x))\cdot g'(x)+f'(g(x))\cdot \frac{d}{dx}(g'(x))$ $=\frac{d}{dx}(f'(u))\cdot g'(x)+f'(g(x))\cdot g''(x)$ (Use the Chain Rule) $=\frac{df'}{du}\cdot \frac{du}{dx}\cdot g'(x)+f'(g(x))\cdot g''(x)$ $=f''(u)\cdot g'(x)\cdot g'(x)+f'(g(x))\cdot g''(x)$ $=f''(g(x))\cdot [g'(x)]^2+f'(g(x))\cdot g''(x)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.