Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.2 - The Product and Quotient Rules - 3.2 Exercises - Page 191: 65

Answer

$$f'(x)=e^x(x^2+2x)$$ $$f''(x)=e^x(x^2+4x+2)$$ $$f'''(x)=e^x(X^2+6x+6)$$ $$f^{(4)}(x)=e^x(x^2+8x+12)$$ $$f^{(5)}(x)=e^x(x^2+10x+20)$$ See work for proof.

Work Step by Step

1. Applying the product rule to f(x), we see that $$f'(x)=(\frac{d}{dx}x^2)e^x+(\frac{d}{dx}e^x)(x^2)$$ $$=2xe^x+x^2e^x$$ $$=e^x(x^2+2x)$$ To get the second derivative, we do the product rule again.$$f''(x)=(\frac{d}{dx}x^2+2x)e^x+(\frac{d}{dx}e^x)(x^2+2x)$$ $$=e^x(2x+2)+e^x(x^2+2x)$$ $$=e^x(x^2+4x+2).$$ Repeat this process 3 more times: $$f'''(x)=(\frac{d}{dx}x^2+4x+2)e^x+(\frac{d}{dx}e^x)(x^2+4x+2)$$ $$=e^x(2x+4)+e^x(x^2+4x+2)$$ $$=e^x(x^2+6x+6)$$ $$f^{(4)}(x)=(\frac{d}{dx}x^2+6x+6)e^x+(\frac{d}{dx}e^x)(x^2+6x+6)$$ $$=e^x(2x+6)+e^x(x^2+6x+6)$$ $$=e^x(x^2+8x+12)$$ $$f^{(5)}(x)=(\frac{d}{dx}x^2+8x+12)e^x+(\frac{d}{dx}e^x)(x^2+8x+12)$$ $$=e^x(2x+8)+e^x(x^2+8x+12)$$ $$e^x(x^2+10x+20)$$. By now, we can deduce that $f^{(n)}(x)=e^x(x^2+2nx+n^2-n)$. Proof: Base case: $$f^{(0)}(x)=f(x)=e^xx^2=e^x(x^2+2(0)x+0^2-0)$$ Now Assume that the claim holds for all n-1. Then $f^{(n)}(x)=\frac{d}{dx}f^{(n-1)}(x)=\frac{d}{dx}e^x(x^2+2(n-1)x+(n-1)^2-(n-1)$ by inductive assumption. Then by the product rule, we see that that is equal to $e^x(2x+2(n-1))+e^x(x^2+2(n-1)x+(n-1)^2-n+1)$ $$=e^x(x^2+2(n-1)x+2x+2(n-1)+(n-1)^2-n+1)$$ $$=e^x(x^2+2x(n-1+1)+n^2+2n-n-2+1+1$$ $$=e^x(x^2+2nx+n^2-n)$$$$Q.E.D$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.