Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.2 - The Product and Quotient Rules - 3.2 Exercises - Page 190: 58

Answer

$$Q'(0)=4$$

Work Step by Step

$$Q(x)=\frac{1+x+x^2+xe^x}{1-x+x^2-xe^x}$$ $$R(x)=\frac{f(x)}{g(x)}$$ According to Quotient Rule, $$Q'(x)=\frac{f'(x)g(x)-f(x)g'(x)}{[g(x)]^2}$$ Therefore, $$Q'(0)=\frac{f'(0)g(0)-f(0)g'(0)}{[g(0)]^2}$$ *Find $f(0)$, $g(0)$, $f'(0)$ and $g'(0)$ $$f(x)=1+x+x^2+xe^x$$ So, $$f'(x)=1+2x+e^x+xe^x$$ Therefore, $f(0)=1+0+0^2+0\times e^0=1$ and $f'(0)=1+2\times0+e^0+0\times e^0=2$ $$g(x)=1-x+x^2-xe^x$$ So, $$g'(x)=-1+2x-e^x-xe^x$$ Therefore, $g(0)=1-0+0^2-0\times e^0=1$ and $g'(0)=-1+2\times0-e^0-0\times e^0=-2$ That means $$Q'(0)=\frac{2\times1-1\times(-2)}{1^2}=4$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.