Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.11 - Hyperbolic Functions - 3.11 Exercises - Page 268: 65

Answer

The tangent has a slope of 1 at the point $(ln(1+\sqrt{2}),\sqrt{2})$

Work Step by Step

$y = cosh~x$ $y' = sinh~x = 1$ $\frac{e^x-e^{-x}}{2} = 1$ $e^x-e^{-x} = 2$ $\frac{e^{2x}-1}{e^x} = 2$ $e^{2x}-1 = 2e^x$ $(e^x)^2-2e^x-1 = 0$ We can use the quadratic formula: $e^x = \frac{2\pm \sqrt{(-2)^2-(4)(1)(-1)}}{2(1)}$ $e^x = \frac{2\pm \sqrt{8}}{2}$ $e^x = 1 \pm \sqrt{2}$ Since $e^x \gt 0$ for all $x$, the solution is $e^x = 1+\sqrt{2}$ Then: $x = ln(1+\sqrt{2})$ We can find $y$: $y = cosh~x$ $y = \frac{e^x+e^{-x}}{2}$ $y = \frac{e^{ln(1+\sqrt{2})}+e^{- ln(1+\sqrt{2})}}{2}$ $y = \frac{1+\sqrt{2}+\frac{1}{1+\sqrt{2}}}{2}$ $y = \frac{\frac{3+2\sqrt{2}}{1+\sqrt{2}}+\frac{1}{1+\sqrt{2}}}{2}$ $y = \frac{\frac{4+2\sqrt{2}}{1+\sqrt{2}}}{2}$ $y = \frac{2+\sqrt{2}}{1+\sqrt{2}}\cdot \frac{1-\sqrt{2}}{1-\sqrt{2}}$ $y = \frac{-\sqrt{2}}{-1}$ $y = \sqrt{2}$ The tangent has a slope of 1 at the point $(ln(1+\sqrt{2}),\sqrt{2})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.