Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Applied Project - Where Should a Pilot Start Descent? - Page 209: 2

Answer

When $x=0$ and $x=l$, acceleration is at a maximum $\frac{6hv^2}{l^2}\leq k$

Work Step by Step

$P(x)=\frac{-2h}{l^3}x^3+\frac{3h}{l^2}x^2$ $P'(x)=\frac{-6h}{l^3}x^2+\frac{6h}{l^2}x$ $P''(x)=\frac{-12h}{l^3}x+\frac{6h}{l^2}\leq k$ $\frac{dx}{dt}=v$ $\frac{dP}{dt}=\frac{dP}{dx}\times\frac{dx}{dt}=\frac{-2hv}{l^3}x^3+\frac{3hv}{l^2}x^2$ $\frac{d^2P}{dt^2}=\frac{d(P'(x))}{dt}=\frac{d(\frac{dP}{dx}\cdot\frac{dx}{dt})}{dt}\cdot\frac{dx}{dt}=\big(\frac{d^2P}{dx^2}\cdot\frac{dx}{dt}+\frac{dP}{dx}\cdot\frac{d^2x}{dt^2}\big)\cdot\frac{dx}{dt}$ $\frac{d^2x}{dt^2}=0$ $\big(\frac{d^2P}{dx^2}\cdot\frac{dx}{dt}+\frac{dP}{dx}\cdot\frac{d^2x}{dt^2}\big)\cdot\frac{dx}{dt}=\frac{-12hv^2}{l^3}x+\frac{6hv^2}{l^2}$ When $x=0$ and $x=l$, acceleration is at a maximum $\frac{6hv^2}{l^2}\leq k$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.