Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.8 - The Derivative as a Function - 2.8 Exercises - Page 165: 61

Answer

(a) We can see a sketch of $f(x)$ below. (b) $f'(x)$ is differentiable for all $x$ (c) $f'(x) = 2\vert x \vert$ for all $x$

Work Step by Step

(a) $f(x) = x~\vert x \vert$ Then: $f(x) = -x^2~~~~$ if $x \lt 0$ $f(x) = x^2~~~~$ if $x \geq 0$ We can see a sketch of $f(x)$ below. (b) Suppose $a \lt 0$: $f'(a) = \lim\limits_{x \to a}\frac{x\vert x \vert-a\vert a \vert}{x-a}$ $= \lim\limits_{x \to a}\frac{x(-x)-a(-a)}{x-a}$ $= \lim\limits_{x \to a}\frac{a^2-x^2}{x-a}$ $= \lim\limits_{x \to a}\frac{(a-x)(a+x)}{x-a}$ $= \lim\limits_{x \to a}(-1)(a+x)$ $= (-1)(2a)$ $ = -2a$ $ = 2 \vert a \vert$ Suppose $a \gt 0$: $f'(a) = \lim\limits_{x \to a}\frac{x\vert x \vert-a\vert a \vert}{x-a}$ $= \lim\limits_{x \to a}\frac{x(x)-a(a)}{x-a}$ $= \lim\limits_{x \to a}\frac{x^2-a^2}{x-a}$ $= \lim\limits_{x \to a}\frac{(x-a)(x+a)}{x-a}$ $= \lim\limits_{x \to a}(x+a)$ $= 2a$ $ = 2 \vert a \vert$ Suppose $a = 0$: $f'(a) = \lim\limits_{x \to a}\frac{x\vert x \vert-a\vert a \vert}{x-a}$ $= \lim\limits_{x \to 0}\frac{x\vert x \vert-0\vert 0 \vert}{x-0}$ $= \lim\limits_{x \to 0}\frac{x\vert x \vert}{x}$ $= \lim\limits_{x \to 0}\vert x \vert$ $= 0$ $f'(x)$ is differentiable for all $x$ (c) As shown above, $f'(x) = 2\vert x \vert$ for all $x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.