Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.7 - Derivatives and Rates of Change - 2.7 Exercises - Page 151: 47

Answer

$f(x)=\tan x$ and $a=\frac{\pi}{4}$

Work Step by Step

The derivatif of a function $f$ at point $a$: $f'(a)=\lim\limits_{h \to 0}\frac{f(a+h)-f(a)}{h}$ Given: $f'(a)=\lim\limits_{h\to 0}\frac{\tan(\frac{\pi}{4}+h)-1}{h}$ Find $f(x)$ and $a$: $\lim\limits_{h \to 0}\frac{f(a+h)-f(a)}{h}=\lim\limits_{h\to 0}\frac{\tan(\frac{\pi}{4}+h)-1}{h}$ $\lim\limits_{h \to 0}\frac{f(a+h)-f(a)}{h}=\lim\limits_{h\to 0}\frac{\tan(\frac{\pi}{4}+h)-\tan\frac{\pi}{4}}{h}$ $f(a+h)=\tan(\frac{\pi}{4}+h)$ and $f(a)=\tan\frac{\pi}{4}$ It gives us $f(x)=\tan x$ and $a=\frac{\pi}{4}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.