Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.5 - Continuity - 2.5 Exercises - Page 125: 48

Answer

$a = \frac{1}{2}$ $b = \frac{1}{2}$

Work Step by Step

$f(x) = \frac{x^2-4}{x-2}~~~$ if $x \lt 2$ $f(x) = ax^2-bx+3~~~$ if $2 \leq x \lt 3$ $f(x) = 2x-a+b~~~$ if $x \geq 3$ For the function to be continuous at $x=2$: $\lim\limits_{x \to 2^-}\frac{x^2-4}{x-2} = f(2)$ $\lim\limits_{x \to 2^-}\frac{(x-2)(x+2)}{x-2} = a(2)^2-b(2)+3$ $\lim\limits_{x \to 2^-}(x+2) = 4a-2b+3$ $4 = 4a-2b+3$ $4a-2b-1=0$ $-8a+4b+2=0$ For the function to be continuous at $x=3$: $\lim\limits_{x \to 3^-}ax^2-bx+3 = f(3)$ $a(3)^2-b(3)+3 = 2(3)-a+b$ $9a-3b+3 = 6-a+b$ $10a-4b-3 = 0$ We can add these two equations: $-8a+4b+2=0$ $10a-4b-3 = 0$ $2a-1 = 0$ $a = \frac{1}{2}$ We can find $b$: $10a-4b-3 = 0$ $10(\frac{1}{2})-4b-3 = 0$ $5-4b-3 = 0$ $-4b = -2$ $b = \frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.