Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.2 - The Limit of a Function - 2.2 Exercises - Page 94: 41

Answer

$x=-2$

Work Step by Step

Recall: $x=a$ is a vertical asymptote of $f(x)$ if $\lim\limits_{x \to a}f(x)=\pm \infty$. The vertical asymptotes of a rational function can be determined by the zeros of its denominator. Find the zero(s) of the denominator of $f(x)$: $2x+4=0$ $2x=-4$ $x=-2$ Now, check the limit of $f(x)$ as $x$ approaches $-2$: $\lim\limits_{x \to -2}f(x)=\lim\limits_{x \to -2}\frac{x-1}{2x+4}$ $=\lim\limits_{x \to -2}\frac{1}{2}\cdot \left(\frac{x-1}{x+2}\right)$ $=\lim\limits_{x \to -2}\frac{1}{2}\cdot \left(\frac{x+2-3}{x+2}\right)$ $=\lim\limits_{x \to -2}\frac{1}{2}\cdot \left(1-\frac{3}{x+2}\right)$ (Use the properties for limits) $=\frac{1}{2}\cdot \left(1-\pm \infty \right)$ $=\pm \infty$ Thus, $x=-2$ is the vertical asymptote of $f(x)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.