Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 15 - Section 15.9 - Change of Variables in Multiple Integrals - 15.9 Exercise - Page 1116: 19

Answer

$6 \pi$

Work Step by Step

Here, we have: $Jacobian =\begin{vmatrix} \dfrac{\partial x}{\partial u}&\dfrac{\partial x}{\partial v}\\\dfrac{\partial y}{\partial u}&\dfrac{\partial y}{\partial v}\end{vmatrix}=\begin{vmatrix} 2&0\\0&3\end{vmatrix}=6$ In the uv plane , the region can be defined as: $R=${$(u,v) | 0 \leq v \leq 1-u, 0\leq u \leq 1$} $\iint_R x^2 dA=\int_{-1}^1 [\int_{-\sqrt{1-v^2}}^{\sqrt{1-v^2}} 24 u^2 du dv$ Plug $u =r \cos \theta$ and $v=r \sin \theta$ $\iint_R x^2 dA=\int_{-1}^1 [\int_{-\sqrt{1-v^2}}^{\sqrt{1-v^2}} 24 u^2 du dv=\int_0^{2 \pi} \int_0^1 24 (r \cos \theta)^2 r dr d \theta$ or, $\int_0^{2 \pi} 6 \cos^2 d \theta=(3) \int_0^{2 \pi} (1+\cos 2 \theta) d \theta$ Thus, $\iint_R x^2 dA=3 [\theta+\dfrac{\sin 2 \theta}{2}]_0^{2 \pi}=6 \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.