Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 1 - Section 1.1 - Four Ways to Represent a Function - 1.1 Exercises - Page 21: 87

Answer

If $f(x)$ and $g(x)$ are both even, $f(x)+g(x)$ is even. If $f(x)$ and $g(x)$ are both odd, $f(x)+g(x)$ is odd. If $f(x)$ is even and $g(x)$ is odd, $f(x)+g(x)$ is neither even nor odd.

Work Step by Step

If $f(x)$ and $g(x)$ are both even, $f(x)=f(-x)$ (i) $g(x)=g(-x)$ (ii) Let $S(x)=f(x)+g(x)$ $=f(-x)+g(-x)$ (from i) and ii)) $=S(-x)$ $\therefore f(x)+g(x)$ is even. If $f(x)$ and $g(x)$ are both odd, $-f(x)=f(-x), f(x)=-f(-x)$ (i) $-g(x)=g(-x), g(x)=-g(-x)$ (ii) Let $S(x)=f(x)+g(x)$ $=-f(-x)-g(-x)$ (from i) and ii)) $=-(f(-x)+g(-x))$ $=-S(x)$ $\because S(-x)=-S(x),$ $\therefore f(x)+g(x)$ is odd. If $f(x)$ is even and $g(x)$ is odd, $f(x)=f(-x)$ (i) $-g(x)=g(-x), g(x)=-g(-x)$ (ii) Let $S(x)=f(x)+g(x)$ $=f(-x)-g(-x)$ (from i) and ii)) $S(-x)=f(-x)+g(-x)$ $\ne \pm S(x)$ $\because S(-x)\ne \pm S(x)$ $\therefore f(x)+g(x)$ is neither even nor odd.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.