Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 1 - Problems - Page 75: 12

Answer

$$ f(x)=\ln (x+\sqrt{x^{2}+1}) $$ (a) $$ \begin{aligned} f(-x) &=\ln (-x+\sqrt{(-x)^{2}+1}) \\ &=\ln \left(-x+\sqrt{x^{2}+1} \cdot \frac{-x-\sqrt{x^{2}+1}}{-x-\sqrt{x^{2}+1}}\right) \\ &=\ln \left(\frac{x^{2}-\left(x^{2}+1\right)}{-x-\sqrt{x^{2}+1}}\right)=\ln \left(\frac{-1}{-x-\sqrt{x^{2}+1}}\right)\\ &=\ln \left(\frac{1}{x+\sqrt{x^{2}+1}}\right) \\ &=\ln 1-\ln (x+\sqrt{x^{2}+1}) \\ &=-\ln (x+\sqrt{x^{2}-1}) \\ &=-f(x) \end{aligned} $$ Therefore, the given function is an odd function. (b) The inverse function of $f$ is $$ f^{-1}(x) =\frac{e^{2 x}-1}{2 e^{x}}. $$

Work Step by Step

$$ f(x)=\ln (x+\sqrt{x^{2}+1}) $$ (a) $$ \begin{aligned} f(-x) &=\ln (-x+\sqrt{(-x)^{2}+1}) \\ &=\ln \left(-x+\sqrt{x^{2}+1} \cdot \frac{-x-\sqrt{x^{2}+1}}{-x-\sqrt{x^{2}+1}}\right) \\ &=\ln \left(\frac{x^{2}-\left(x^{2}+1\right)}{-x-\sqrt{x^{2}+1}}\right)=\ln \left(\frac{-1}{-x-\sqrt{x^{2}+1}}\right)\\ &=\ln \left(\frac{1}{x+\sqrt{x^{2}+1}}\right) \\ &=\ln 1-\ln (x+\sqrt{x^{2}+1}) \\ &=-\ln (x+\sqrt{x^{2}-1}) \\ &=-f(x) \end{aligned} $$ Therefore, the given function is an odd function. (b) $$ y=\ln (x+\sqrt{x^{2}+1}) $$ Interchanging $x $ and $y $, we get $$ x=\ln (y+\sqrt{y^{2}+1}) \Rightarrow e^{x}=y+\sqrt{y^{2}+1} $$ $ \Rightarrow$ $$ e^{x}-y=\sqrt{y^{2}+1} \Rightarrow e^{2 x}-2 y e^{x}+y^{2}=y^{2}+1 \Rightarrow e^{2 x}-1=2 y e^{x} \Rightarrow y=\frac{e^{2 x}-1}{2 e^{x}}=f^{-1}(x). $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.