Answer
coincide
Work Step by Step
Solve each equation for y, then find and plot 3 points for each equation and connect with a line.
$2x-4y=8$
$2x-4y-2x=8-2x$
$-4y\div-4=(8-2x)\div-4$
$y=\frac{1}{2}x-2$
$\underline{x\ \ \ \ \ \ \ \ \frac{1}{2}x-2\ \ \ \ \ \ \ \ y}$
$0\ \ \ \ \ \ \ \ 0-2\ \ \ \ \ \ \ \ -2$
$4\ \ \ \ \ \ \ \ 2-2\ \ \ \ \ \ \ \ 0$
$8\ \ \ \ \ \ \ \ 4-2\ \ \ \ \ 2$
$3x-6y=12$
$3x-6y-3x=12-3x$
$-6y\div-6=(12-3x)\div-6$
$y=\frac{1}{2}x-2$
$\underline{x\ \ \ \ \ \ \ \ \frac{1}{2}x-2\ \ \ \ \ \ \ \ y}$
$0\ \ \ \ \ \ \ \ 0-2\ \ \ \ \ \ \ \ -2$
$4\ \ \ \ \ \ \ \ 2-2\ \ \ \ \ \ \ \ 0$
$8\ \ \ \ \ \ \ \ 4-2\ \ \ \ \ 2$
The two equations have the same solution set, so the line on the graph is the same for each of the two equations.