Answer
$13\dfrac{11}{25}$
Work Step by Step
Convert each number to an improper fraction to obtain:
$=\dfrac{5(1)+4}{5} \div \dfrac{16(1)+9}{16} \times \dfrac{3(11)+2}{3}
\\=\dfrac{9}{5}\div \dfrac{25}{16} \times \dfrac{35}{3}$
Perform division first. Use the rule $\dfrac{a}{b} \div \dfrac{c}{d} = \dfrac{a}{b} \times \dfrac{d}{c}$ to obtain:
$\require{cancel}
=\dfrac{9}{5} \times \dfrac{16}{25} \times \dfrac{35}{3}$
Cancel common factor then multiply to obtain:
$\require{cancel}
=\dfrac{\cancel{9}^3}{\cancel{5}} \times \dfrac{16}{25} \times \dfrac{\cancel{35}^7}{\cancel{3}}
\\=\dfrac{3(16)(7)}{25}
\\=\dfrac{336}{25}
\\=13\dfrac{11}{25}$