Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 8 - Section 8.2 - The Quadratic Formula - Exercise Set - Page 611: 114

Answer

$1$ and $5$.

Work Step by Step

The given function is $f(x)=-2(x-3)^2+8$ Plug $f(x)=0$ into the given function. $\Rightarrow 0=-2(x-3)^2+8$ Factor out $2$. $\Rightarrow 0=2[-(x-3)^2+4]$ Divide both sides by $2$. $\Rightarrow \frac{0}{2}=\frac{2[-(x-3)^2+4]}{2}$ Simplify. $\Rightarrow 0=-(x-3)^2+4$ Use the special formula $(A-B)^2=A^2-2AB+B^2$ We have $A=x$ and $B=3$ $\Rightarrow 0=-[x^2-2(x)(3)+3^2]+4$ Simplify. $\Rightarrow 0=-[x^2-6x+9]+4$ Use the distributive property. $\Rightarrow 0=-x^2+6x-9+4$ Simplify. $\Rightarrow 0=-x^2+6x-5$ Rewrite the middle term $6x$ as $5x+1x$. $\Rightarrow 0=-x^2+5x+1x-5$ Group the terms. $\Rightarrow 0=(-x^2+5x)+(1x-5)$ Factor groups. $\Rightarrow 0=-x(x-5)+1(x-5)$ Factor out $(x-5)$. $\Rightarrow 0=(x-5)(-x+1)$ Set each factor equal to zero. $\Rightarrow x-5=0$ or $-x+1=0$ Isolate $x$. $\Rightarrow x=5$ or $x=1$ Hence, the $x-$ intercepts are $1$ and $5$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.