Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 8 - Section 8.2 - The Quadratic Formula - Exercise Set - Page 609: 75

Answer

$x=1$ or $x=-3$

Work Step by Step

If $|x| = c$, then $x = c$ or $x = -c. (c>0)$ $x^2+2x=3$ (equation 1) or $x^2+2x=-3$ (equation 2) Solve using the quadratic formula $x=\frac{−b±\sqrt{b^2−4ac}}{2a}$ Equation 1: $x^2+2x=3$ Subtract $3$ to both sides: $x^2+2x-3=3-3$ $x^2+2x-3=0$ $a=1$, $b=2$, $c=-3$ $x=\frac{−2±\sqrt{2^2−(4⋅1⋅-3)}}{2⋅1}$ $x=\frac{−2±\sqrt{4−(-12)}}{2}$ $x=\frac{−2±\sqrt{16}}{2}$ $x=\frac{−2±4}{2}$ $x=1$ or $x=-3$ Equation 2: $x^2+2x=-3$ Add $3$ to both sides: $x^2+2x+3=-3+3$ $x^2+2x+3=0$ $a=1$, $b=2$, $c=3$ $x=\frac{−2±\sqrt{2^2−(4⋅1⋅3)}}{2⋅1}$ $x=\frac{−2±\sqrt{4−(12)}}{2}$ $x=\frac{−2±\sqrt{-8}}{2}$ (no real solution since the discriminant is negative)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.