Answer
$\frac{1}{x+3},\frac{1}{x},x$
$x+3$
$-3$
$-\frac{1}{x(x+3)}$.
Work Step by Step
The expression to be solved is.
$\Rightarrow \frac{x(x+3)}{x(x+3)}\cdot \frac{\left (\frac{1}{x+3}-\frac{1}{x} \right )}{3 }$
Apply the distributive property.
$\Rightarrow \frac{x(x+3)\cdot\frac{1}{x+3}-x(x+3)\cdot\frac{1}{x} }{3x(x+3) }$
Cancel common terms.
$\Rightarrow \frac{x-(x+3) }{3x(x+3) }$
Simplify.
$\Rightarrow \frac{x-x-3 }{3x(x+3) }$
$\Rightarrow \frac{-3 }{3x(x+3) }$
Cancel common terms.
$\Rightarrow \frac{-1 }{x(x+3) }$