Answer
$x=-1,6,7$
Work Step by Step
Given: $x(x+1)^3-42(x+1)^2=0$
Need to use factorization to solve the quadratic equation.
This can be factorized as follows:
$(x+1)^2(x^2+x-42)=0$
Now $(x+1)^2=0$ and $(x^2+x-42)=0$
This implies $x=-1$
and $(x^2+x-42)=0$
or, $x^2-6x+7x-42=0$
or, $(x-6)(x+7)=0$
This implies $x=6,-7$
Hence, $x=-1,6,7$