Answer
$52.$
Work Step by Step
We know that for a matrix
\[
\left[\begin{array}{rrr}
a & b & c \\
d &e & f \\
g &h & i \\
\end{array} \right]
\]
the determinant, $D=a(ei-fh)-b(di-fg)+c(dh-eg).$
Hence here $D=0(5\cdot4-3\cdot1)-(-3)(1\cdot4-3\cdot(-2))+2(1\cdot1-5\cdot(-2))=0(10)+3(10)+2(11)=52.$