Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 4 - Section 4.5 - Linear Programming - Review Exercises - Page 309: 30

Answer

$(−∞,−6)∪(0,∞)$. The graph is shown below.

Work Step by Step

The given expression is $\Rightarrow \left |\frac{2x+6}{3}\right |\gt2$ Rewrite the inequality without absolute value bars. $\Rightarrow \frac{2x+6}{3}\lt-2$ or $ \frac{2x+6}{3}\gt2$ Solve each inequality separately. Multiply all parts by $3$. $\Rightarrow (3)\frac{2x+6}{3}\lt3(-2)$ or $ (3)\frac{2x+6}{3}\gt3(2)$ Simplify. $\Rightarrow 2x+6\lt-6$ or $ 2x+6\gt6$ Subtract $6$ from all parts. $\Rightarrow 2x+6-6\lt-6-6$ or $ 2x+6-6\gt6-6$ Simplify $\Rightarrow 2x\lt-12$ or $ 2x\gt0$ Divide all parts by $2$. $\Rightarrow \frac{2x}{2}\lt\frac{-12}{2}$ or $ \frac{2x}{2}\gt\frac{0}{2}$ Simplify. $\Rightarrow x\lt-6$ or $ x\gt0$ The solution set is less than $-6$ or greater than $0$. The interval notation is $(−∞,−6)∪(0,∞)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.