Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Test - Page 251: 16

Answer

$\{(-1,2,2)\}$.

Work Step by Step

The given system of equations is $\left\{\begin{matrix} x& -4y &+4z&=&-1\\ 2x& -y & +5z&=&6\\ -x& +3y &-z &=&5 \end{matrix}\right.$ The augmented matrix is $\Rightarrow \left[\begin{array}{ccc|c} 1 & -4 & 4& -1\\ 2 & -1 & 5& 6 \\ -1&3&-1&5 \end{array}\right]$ Perform $R_2\rightarrow R_2-2\times R_1$ and $R_3\rightarrow R_3+ R_1$. $\Rightarrow \left[\begin{array}{ccc|c} 1 & -4 & 4& -1\\ 2-2(1) & -1-2(-4) & 5-2(4)& 6-2(-1) \\ -1+1&3+(-4)&-1+4&5+(-1) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & -4 & 4& -1\\ 0 & 7 & -3& 8 \\ 0&-1&3&4 \end{array}\right]$ Perform $R_2\rightarrow \frac{R_2}{7}$. $\Rightarrow \left[\begin{array}{ccc|c} 1 & -4 & 4& -1\\ 0/7 & 7/7 & -3/7& 8/7 \\ 0&-1&3&4 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & -4 & 4& -1\\ 0 & 1 & -3/7& 8/7 \\ 0&-1&3&4 \end{array}\right]$ Perform $R_1\rightarrow R_1+4\times R_2$ and $R_3\rightarrow R_3+ R_2$. $\Rightarrow \left[\begin{array}{ccc|c} 1+4(0) & -4+4(1) & 4+4(-3/7)& -1+4(8/7)\\ 0 & 1 & -3/7& 8/7 \\ 0+0&-1+1&3+(-3/7)&4+(8/7) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0 & 16/7&25/7\\ 0 & 1 & -3/7& 8/7 \\ 0&0&18/7&36/7 \end{array}\right]$ Perform $R_3\rightarrow R_3(7/18)$. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0 & 16/7&25/7\\ 0 & 1 & -3/7& 8/7 \\ 0(7/18)&0(7/18)&18/7(7/18)&36/7(7/18) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0 & 16/7&25/7\\ 0 & 1 & -3/7& 8/7 \\ 0&0&1&2 \end{array}\right]$ Perform $R_1\rightarrow R_1-(16/7) R_3$ and $R_2\rightarrow R_2+(3/7) R_3$. $\Rightarrow \left[\begin{array}{ccc|c} 1-(16/7) (0) & 0-(16/7) (0) & 16/7-(16/7) (1)&25/7-(16/7) (2)\\ 0+(3/7)(0) & 1+(3/7)(0) & -3/7+(3/7)(1)& 8/7+(3/7)(2) \\ 0&0&1&2 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0 & 0&-1\\ 0 & 1 & 0& 2 \\ 0&0&1&2 \end{array}\right]$ Use back substitution to solve the linear system. $\Rightarrow x=-1$ and $\Rightarrow y=2$. and $\Rightarrow z=2$. The solution set is $\{(x,y,z)\}=\{(-1,2,2)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.