Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Test - Page 250: 13

Answer

$\{(1,3,2)\}$.

Work Step by Step

The given system of equations is $\left\{\begin{matrix} x& +y &+z&=&6& ...... (1) \\ 3x& +4y & -7z&=&1& ...... (2)\\ 2x& -y &+3z &=&5& ...... (3) \end{matrix}\right.$ Addition method:- Step 1:- Reduce the system to two equations in two variables. Multiply the equation (1) by $-4$. $\Rightarrow -4x-4y -4z=-24 $ ...... (4) Add equation (2) and (4). $\Rightarrow 3x+4y-7z-4x-4y -4z=1-24 $ Simplify. $\Rightarrow -x-11z =-23 $ ...... (5) Add equation (1) and (3). $\Rightarrow x+y+z+2x-y +3z=6+5 $ $\Rightarrow 3x+4z=11 $ ...... (6) Step 2:- Solve the two equations from the step 1. Multiply equation (5) by $3$. $\Rightarrow -3x-33z =-69 $ ...... (7) Add equation (6) and (7). $\Rightarrow 3x+4z-3x-33z=11-69 $ Add like terms. $\Rightarrow -29z=-58 $ Divide both sides by $-29$. $\Rightarrow \frac{-29z}{-29}=\frac{-58}{-29} $ $\Rightarrow z=2$ Substitute the value of $z$ into equation (6). $\Rightarrow 3x+4(2) =11 $ $\Rightarrow 3x+8 =11 $ Subtract $8$ from both sides. $\Rightarrow 3x+8-8 =11-8 $ Simplify and isolate $x$. $\Rightarrow x =1 $ Step 3:- Use back-substitution to find the remaining variables. Substitute the value of $x$ and $z$ into equation (1). $\Rightarrow 1 +y +2=6$ Simplify. $\Rightarrow y +3=6$ Subtract $3$ from both sides. $\Rightarrow y +3-3=6-3$ Add like terms. $\Rightarrow y =3$ The solution set is $\{(x,y,z)\}=\{(1,3,2)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.