Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Section 3.5 - Determinants and Cramer’s Rule - Exercise Set - Page 241: 50

Answer

$26$ square units.

Work Step by Step

The given coordinates are $\Rightarrow (x_1,y_1)=(1,1)$ $\Rightarrow (x_2,y_2)=(-2,-3)$ $\Rightarrow (x_3,y_3)=(11,-3)$ The formula for the area of the triangle is $\Rightarrow A=\pm \frac{1}{2}\begin{vmatrix} x_1& y_1& 1\\ x_2& y_2& 1\\ x_3& y_3& 1 \end{vmatrix}$ Plug all the values. $\Rightarrow A=\pm \frac{1}{2}\begin{vmatrix} 1& 1& 1\\ -2& -3& 1\\ 11& -3& 1 \end{vmatrix}$ First solve the determinant. $\Rightarrow \begin{vmatrix} 1& 1& 1\\ -2& -3& 1\\ 11& -3& 1 \end{vmatrix}$ Perform $R_2\rightarrow R_2+2R_1$ and $R_3\rightarrow R_3-11R_1$. $\Rightarrow \begin{vmatrix} 1& 1& 1\\ -2+2(1)& -3+2(1)& 1+2(1)\\ 11-11(1)& -3-11(1)& 1-11(1) \end{vmatrix}$ Simplify. $\Rightarrow \begin{vmatrix} 1& 1& 1\\ 0& -1& 3\\ 0& -14& -10 \end{vmatrix}$ Perform $R_3\rightarrow R_3-14R_2$. $\Rightarrow \begin{vmatrix} 1& 1& 1\\ 0& -1& 3\\ 0-14(0)& -14-14(-1)& -10-14(3) \end{vmatrix}$ Simplify. $\Rightarrow \begin{vmatrix} 1& 1& 1\\ 0& -1& 3\\ 0& 0& -52 \end{vmatrix}$ All elements below the diagonal are zero. Hence, the determinant is the multiplication of the main diagonal elements. $\Rightarrow 1\cdot (-1)\cdot (-52) $ Simplify. $\Rightarrow 52 $ Substitute back the above value into the formula. $\Rightarrow \pm \frac{1}{2}(52)$ Simplify. $\Rightarrow \pm 26$ We take the positive value. $\Rightarrow 26$ Hence, the area of the triangle is $26$ square units.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.