Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Review Exercises - Page 249: 35

Answer

$\{(1,3,-4)\}$.

Work Step by Step

The given system of equations is $x+2y+3z=-5$ $2x+y+z=1$ $x+y-z=8$ The augmented matrix is $\Rightarrow \left[\begin{array}{ccc|c} 1 & 2 & 3 &-5\\ 2 & 1 & 1 &1 \\ 1 & 1 & -1 &8 \end{array}\right]$ Perform $R_2\rightarrow R_2-2 R_1$ and $R_3\rightarrow R_3- R_1$. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 2 & 3 &-5\\ 2-2(1) & 1-2(2) & 1-2(3) &1-2(-5) \\ 1-1 & 1-2 & -1-3 &8-(-5) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 2 & 3 &-5\\ 0 & -3 & -5 &11 \\ 0 & -1 & -4 &13 \end{array}\right]$ Perform $R_2\rightarrow R_2/(-3)$. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 2 & 3 &-5\\ 0/(-3) & -3/(-3) & -5/(-3) &11/(-3) \\ 0 & -1 & -4 &13 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 2 & 3 &-5\\ 0 & 1 & 5/3 &-11/3 \\ 0 & -1 & -4 &13 \end{array}\right]$ Perform $R_1\rightarrow R_1-2 R_2$ and $R_3\rightarrow R_3+ R_2$. $\Rightarrow \left[\begin{array}{ccc|c} 1-2(0) & 2-2(1) & 3-2(5/3) &-5-2(-11/3)\\ 0 & 1 & 5/3 &-11/3 \\ 0+0 & -1+1 & -4+5/3 &13+(-11/3) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0 & -1/3 &7/3\\ 0 & 1 & 5/3 &-11/3 \\ 0 & 0 & -7/3 &28/3 \end{array}\right]$ Perform $R_3\rightarrow R_3(-3/7)$. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0 & -1/3 &7/3\\ 0 & 1 & 5/3 &-11/3 \\ 0(-3/7) & 0(-3/7) & -7/3(-3/7) &28/3(-3/7) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0 & -1/3 &7/3\\ 0 & 1 & 5/3 &-11/3 \\ 0 & 0 & 1 &-4 \end{array}\right]$ Perform $R_1\rightarrow R_1+(1/3) R_2$ and $R_2\rightarrow R_2-(5/3) R_3$. $\Rightarrow \left[\begin{array}{ccc|c} 1+(1/3)(0) & 0+(1/3)(0) & -1/3+(1/3)(1) &7/3+(1/3)(-4)\\ 0-(5/3)(0) & 1-(5/3)(0) & 5/3-(5/3)(1) &-11/3-(5/3)(-4) \\ 0 & 0 & 1 &-4 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0 & 0 &1\\ 0 & 1 & 0 &3 \\ 0 & 0 & 1 &-4 \end{array}\right]$ Use back substitution to solve the linear system. $\Rightarrow x=1$ and $\Rightarrow y=3$. and $\Rightarrow z=-4$. The solution set is $\{(x,y,z)\}=\{(1,3,-4)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.