Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Review Exercises - Page 248: 14

Answer

Price of a TV $=\$350$. Price of a stereo $=\$370$.

Work Step by Step

Step 1:- Assume unknown quantities as variables. Let the price of the TV $=x$. Let the price of the stereo $=y$. Step 2:- Write system of equations. The given values are $3$ TV $+ 4$ stereo $= \$2530$ $4$ TV $+ 3$ stereo $= \$2510$ Or we can write. $\Rightarrow 3x+4y=2530$ ...... (1) $\Rightarrow 4x+3y=2510$ ...... (2) Step 3: Solve the system of equations. Multiply equation (1) by $4$ and equation (2) by $-3$. $\Rightarrow 12x+16y= 10120$ ...... (3) $\Rightarrow -12x-9y=-7530$ ...... (4) Add equation (3) and (4). $\Rightarrow 12x+16y-12x-9y=10120-7530$ Simplify. $\Rightarrow 7y=2590$ Divide both sides by $7$. $\Rightarrow \frac{7y}{7}=\frac{2590}{7}$ Simplify. $\Rightarrow y=370$ Plug the value of $y$ into equation (1). $\Rightarrow 3x+4(370)=2530$ Simplify. $\Rightarrow 3x+1480=2530$ Isolate $x$. $\Rightarrow x=\frac{2530-1480}{3}$ Simplify. $\Rightarrow x=350$. Step 4: Check the answers. Substitute the values of $x$ and $y$ into equation (2). $\Rightarrow 4(350)+3(370)=2510$ $\Rightarrow 1400+1110=2510$ $\Rightarrow 2510=2510$. True.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.