Answer
$9 \times 10^{-3}$
Work Step by Step
Write the numerator and the denominator in scientific notation to obtain:
$=\dfrac{(7.2 \times 10^{-4}) \times (3 \times 10^{-3})}{2.4 \times 10^{-4}}$
Multiply the corresponding parts of the numerator to obtain:
$=\dfrac{21.6 \times 10^{-4+(-3)}}{2.4 \times 10^{-4}}
\\=\dfrac{21.6 \times 10^{-7}}{2.4 \times 10^{-4}}
\\=\dfrac{2.16 \times 10^{-7+1}}{2.4 \times 10^{-4}}
\\=\dfrac{2.16 \times 10^{-6}}{2.4 \times 10^{-4}}$
Divide the corresponding parts to obtain:
$=\dfrac{2.16}{2.4} \times \dfrac{10^{-6}}{10^{-4}}
\\=0.9 \times 10^{-6-(-4)}
\\=0.9 \times 10^{-6+4}
\\=0.9 \times 10^{-2}
\\=9 \times 10^{-2-1}
\\=9 \times 10^{-3}$