Answer
$$x^{(n-1)} \cdot x^{(3n+4)}=x^{4n+3}$$
Work Step by Step
$$x^{(n-1)} \cdot x^{(3n+4)}$$
Recall the product rule: $a^{m}⋅a^{n}=a^{m+n}$
Thus,
$$x^{(n-1)} \cdot x^{(3n+4)}$$ $$x^{(n-1)+(3n+4)}$$
Remove the parentheses in the exponents:
$$x^{(n-1)+(3n+4)}$$ $$=x^{4n+3}$$