Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 1 - Linear Functions - 1.7 Functions and Function Notation - 1.7 Exercises - Page 109: 54

Answer

a. $f(20)=\frac{23}{5}$ b. $f(12)=3$ c. $x=47$ d. Domain:- $(-\infty,\infty)$. Range:- $(-\infty,\infty)$.

Work Step by Step

The given function is $f(x)=\frac{1}{5}x+\frac{3}{5}$ a. Substitute $x=20$ into the function. $\Rightarrow f(20)=\frac{1}{5}(20)+\frac{3}{5}$ Clear the parentheses. $\Rightarrow f(20)=\frac{20}{5}+\frac{3}{5}$ Add numerators because denominators are same. $\Rightarrow f(20)=\frac{23}{5}$. b. Substitute $x=12$ into the function. $\Rightarrow f(12)=\frac{1}{5}(12)+\frac{3}{5}$ Clear the parentheses. $\Rightarrow f(12)=\frac{12}{5}+\frac{3}{5}$ Add numerators because denominators are same. $\Rightarrow f(12)=\frac{15}{5}$. Simplify. $\Rightarrow f(12)=3$. c. Substitute $f(x)=10$ into the function. $\Rightarrow 10=\frac{1}{5}x+\frac{3}{5}$ Multiply the equation by $5$. $\Rightarrow 5(10)=5\left (\frac{1}{5}x+\frac{3}{5}\right )$ Use distributive property. $\Rightarrow 5(10)=5\left (\frac{1}{5}x\right )+5\left (\frac{3}{5}\right )$ Simplify. $\Rightarrow 50=x+3$ Subtract $3$ from both sides. $\Rightarrow 50-3=x+3-3$ Simplify. $\Rightarrow 47=x$. d. This is a linear function. Hence, all real number inputs will result in real number outputs. The domain is $(-\infty,\infty)$ and the range is $(-\infty,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.