Answer
15.4 years or 15 years and 5 months
Work Step by Step
1000 dollars initial amount
2000 dollars desired amount
4.5% interest
Compounds daily (365 days)
$A=2000$
$P=1000$
$r=.045$
$n=365$
$A=P(1+(r/n))^{n*t}$
$2000=1000(1+(.045/365))^{365*t}$
$2000/1000=1000(1+(.045/365))^{365*t}/1000$
$2=(1+(.045/365))^{365*t}$
$2=(1+.00012328)^{365*t}$
$2=1.00012328^{365*t}$
$ln 2 =365* t* ln 1.00012328$
$ln2/365*ln 1.00012328 = 365*t* ln 1.00012328$
$ .693147/365* .00012327 =t$
$.693147/.04499=t$
$15.405 =t$
15.4 years or 15 years and 5 months