Answer
$x=\frac{e^{2.3}+4}{3}\approx4.6581$
Work Step by Step
We are given the equation $\ln(3x-4)=2.3$. To solve for x, remember that the base of a natural logarithm is understood to be $e$.
Therefore, $\ln(3x-4)=log_{e}(3x-4)=2.3$.
If $b\gt0$ and $b\ne1$, then $y=log_{b}x$ means $x=b^{y}$ for every $x\gt0$ and every real number $y$.
Therefore, $3x-4=e^{2.3}$.
Add 4 to both sides.
$3x=e^{2.3}+4$
Divide both sides by 3.
$x=\frac{e^{2.3}+4}{3}\approx4.6581$