Answer
$\dfrac{5}{x-2}$ square meters.
Work Step by Step
RECALL:
The area of a rectangle is given by the formula $A=\text{(length)(width)}$.
Use the formula above to have:
$\\A=\dfrac{5x}{x^2-4} \cdot \dfrac{x+2}{x}
\\A=\dfrac{5x}{(x-2)(x+2)} \cdot \dfrac{x+2}{x}$
Cancel the common factor to have:
$\require{cancel}
\\A=\dfrac{5\cancel{x}}{(x-2)\cancel{(x+2)}} \cdot \dfrac{\cancel{x+2}}{\cancel{x}}
\\A=\dfrac{5}{x-2}$