Answer
$y=-.016x^2+1.6x$
Work Step by Step
$y=ax^2+bx+c$
At 50 meters, the parabola is at its highest point of 40 meters
At 0 meters, the parabola is at its lowest point of 0 meters
$x=50$, $y=40$
$y=ax^2+bx+c$
$40=a*50^2+b*50+c$
$40=2500a+50b+c$
$x=0$, $y=0$
$y=ax^2+bx+c$
$0=a*0^2+b*0+c$
$0=0*a+0*b+c$
$0=c$
$40=2500a+50b+c$
$40=2500a+50b+0$
$40=2500a+50b$
$x=100$, $y=0$
$y=ax^2+bx+c$
$0=a*100^2+100*b+c$
$0=10000a+100b+c$
$0=10000a+100b$
$40=2500a+50b$
$0=10000a+100b$
$40*4=4*(2500a+50b)$
$160=10000a+200b$
$0=10000a+100b$
$160=10000a+200b$
$0-160=10000a+100b-10000a-200b$
$-160=-100b$
$-160/-100 =-100b/-100$
$16/10= b$
$8/5 =b$
$40=2500a+50b+c$
$40=2500a+50b$
$40=2500a+50*8/5$
$40=2500a+80$
$40-80=2500a+80-80$
$-40 =2500a$
$-40/2500 =2500a/2500$
$-4/250 =a$
$-4*4/250*4 =a$
$-16/1000=a$
$-.016=a$
$y=ax^2+bx+c$
$c=0$, $b=1.6$, $a=-.016$
$y=-.016x^2+1.6x$