Answer
$\text{Set Builder Notation: }
\left\{ y|y\gt3 \right\}
\\\text{Interval Notation: }
\left( 3,\infty \right)$
Work Step by Step
$\bf{\text{Solution Outline:}}$
Use the properties of inequality to solve the given inequality, $
2+6y\gt20
.$ Write the answer in both set-builder notation and interval notation.
$\bf{\text{Solution Details:}}$
Using the properties of inequality, the inequality above is equivalent to
\begin{array}{l}\require{cancel}
2+6y\gt20
\\\\
6y\gt20-2
\\\\
6y\gt18
\\\\
y\gt\dfrac{18}{6}
\\\\
y\gt3
.\end{array}
Hence, the solution set is
\begin{array}{l}\require{cancel}
\text{Set Builder Notation: }
\left\{ y|y\gt3 \right\}
\\\text{Interval Notation: }
\left( 3,\infty \right)
.\end{array}