Answer
The series $4+20+100+500+2500+12,500$ is a geometric series.
Work Step by Step
A series having the same common ratio throughout the series is a geometric series.
A series having the same common difference throughout the series is an arithmetic series.
Consider the provided series, $4+20+100+500+2500+12,500$
The common ratio for the series is given by,
$r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$
Find the common ratio,
$r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$
Substitute $n=1$ in the common ratio $r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$
Thus,
$\begin{align}
& r=\frac{{{a}_{1+1}}}{{{a}_{1}}} \\
& =\frac{{{a}_{2}}}{{{a}_{1}}} \\
& =\frac{20}{4} \\
& =5
\end{align}$
Find the common ratio,
$r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$
Substitute $n=2$ in the common ratio $r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$
Thus,
$\begin{align}
& r=\frac{{{a}_{2+1}}}{{{a}_{2}}} \\
& =\frac{a3}{{{a}_{2}}} \\
& =\frac{100}{20} \\
& =5
\end{align}$
Find the common ratio,
$r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$
Substitute $n=3$ in the common ratio $r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$
Thus,
$\begin{align}
& r=\frac{{{a}_{3+1}}}{{{a}_{3}}} \\
& =\frac{{{a}_{4}}}{{{a}_{3}}} \\
& =\frac{500}{100} \\
& =5
\end{align}$
Find the common ratio,
$r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$
Substitute $n=4$ in the common ratio $r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$
Thus,
$\begin{align}
& r=\frac{{{a}_{4+1}}}{{{a}_{4}}} \\
& =\frac{{{a}_{5}}}{{{a}_{4}}} \\
& =\frac{2500}{500} \\
& =5
\end{align}$
Find the common ratio,
$r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$
Substitute $n=5$ in the common ratio $r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$
Thus,
$\begin{align}
& r=\frac{{{a}_{5+1}}}{{{a}_{5}}} \\
& =\frac{{{a}_{6}}}{{{a}_{5}}} \\
& =\frac{12500}{2500} \\
& =5
\end{align}$
So, this is a geometric series.
Consider the provided series, $4+20+100+500+2500+12,500$
The common difference for the series is given by,
${{d}_{n}}={{a}_{n+1}}-{{a}_{n}}$
Find the common difference,
${{d}_{n}}={{a}_{n+1}}-{{a}_{n}}$
Substitute $n=1$ in the common ratio ${{d}_{n}}={{a}_{n+1}}-{{a}_{n}}$
Therefore,
$\begin{align}
& {{d}_{1}}={{a}_{1+1}}-{{a}_{1}} \\
& ={{a}_{2}}-{{a}_{1}} \\
& =20-4 \\
& =16
\end{align}$
Find the common difference,
${{d}_{n}}={{a}_{n+1}}-{{a}_{n}}$
Substitute $n=2$ in the common ratio ${{d}_{n}}={{a}_{n+1}}-{{a}_{n}}$
Thus,
$\begin{align}
& {{d}_{2}}={{a}_{2+1}}-{{a}_{1}} \\
& ={{a}_{3}}-{{a}_{1}} \\
& =100-20 \\
& =80
\end{align}$
Hence, ${{d}_{1}}\ne {{d}_{2}}$
So, this is not an arithmetic series.
Thus,
The series $4+20+100+500+2500+12,500$ is a geometric series.