Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 13 - Conic Sections - 13.3 Conic Sections: Hyperbolas - 13.3 Exercise Set - Page 872: 54

Answer

Therefore, the equations of the asymptotes are $y=+x$ and $y=-x$ because the ratio of $\frac{b}{a}$ is equal to one.

Work Step by Step

$\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1$ The equation of the asymptote for the standard formula is, $y=\pm \frac{b}{a}x$ Now, put $a=b$ in the above equation, $\begin{align} & y=\pm \frac{b}{b}x \\ & =\pm x \end{align}$ Therefore, the equations of the asymptotes are $y=+x$ and $y=-x$ because the ratio of $\frac{b}{a}$ is equal to one.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.