Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.7 Applications of Exponential Functions and Logarithmic Functions - 12.7 Exercise Set - Page 838: 58

Answer

Proof.

Work Step by Step

Now, suppose at any time $T$, $P\left( T \right)$ is half of ${{P}_{0}}$, so put $P\left( T \right)=\frac{1}{2}{{P}_{0}}$ in the exponential decay function: $\begin{align} & P\left( T \right)={{P}_{0}}{{e}^{-kT}} \\ & \frac{1}{2}{{P}_{0}}={{P}_{0}}{{e}^{-kT}} \\ & \frac{1}{2}={{e}^{-kT}} \end{align}$ $\begin{align} & \frac{1}{2}={{e}^{-kT}} \\ & \ln \frac{1}{2}=\ln {{e}^{-kT}} \\ & \ln \frac{1}{2}=-kT \\ & \frac{\ln \frac{1}{2}}{-k}=T \end{align}$ Further simplified, $\begin{align} & \frac{\ln \frac{1}{2}}{-k}=T \\ & \frac{\ln 1-\ln 2}{-k}=T \\ & \frac{0-\ln 2}{-k}=T \\ & \frac{\ln 2}{k}=T \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.