Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.7 Applications of Exponential Functions and Logarithmic Functions - 12.7 Exercise Set - Page 835: 30

Answer

a) The whale population will reach 15,000 in about 22 years after 1982, in 2004. b) The whale population will reach 25,000 in about 33 years after 1982, in 2014. c) The graph is shown below.

Work Step by Step

a) To calculate the year when the whale population will reach 15,000, substitute $x=15$ in $Y\left( x \right)=21.77\ln \frac{x}{5.5}$: $\begin{align} & Y\left( x \right)=21.77\ln \frac{x}{5.5} \\ & Y\left( x \right)=21.77\ln \frac{15}{5.5} \end{align}$ Using a calculator, $\ln \frac{15}{5.5}\approx 1.00330$. Therefore, $\begin{align} & Y\left( x \right)=21.77\times 1.00330 \\ & \approx 21.84 \\ & \approx 22 \end{align}$ b) To calculate the year when the whale population will reach 25,000, substitute $x=25$ in $Y\left( x \right)=21.77\ln \frac{x}{5.5}$: $\begin{align} & Y\left( x \right)=21.77\ln \frac{x}{5.5} \\ & Y\left( x \right)=21.77\ln \frac{25}{5.5} \end{align}$ $\ln \frac{25}{5.5}\approx 1.51412$. Therefore, $\begin{align} & Y\left( x \right)=21.77\times 1.51412 \\ & \approx 32.96 \\ & \approx 33 \end{align}$ c) From the above parts, $Y\left( x \right)=22$, when $x=15$ (from part a) $Y\left( x \right)=33$, when $x=25$(from part b) Also, when $x=5.5$, $\begin{align} & Y\left( x \right)=21.77\ln \frac{x}{5.5} \\ & Y\left( x \right)=21.77\ln \frac{5.5}{5.5} \\ & =21.77\ln 1 \end{align}$ $\ln 1=0$. Therefore, $\begin{align} & Y\left( x \right)=21.77\times 0 \\ & =0 \end{align}$ When $x=10$, $\begin{align} & Y\left( x \right)=21.77\ln \frac{x}{5.5} \\ & Y\left( x \right)=21.77\ln \frac{10}{5.5} \end{align}$ $\ln \frac{10}{5.5}\approx 0.597$. Therefore, $\begin{align} & Y\left( x \right)\approx 21.77\times 0.597 \\ & \approx 12.99 \\ & \approx 13 \end{align}$ When $x=12$, $\begin{align} & Y\left( x \right)=21.77\ln \frac{x}{5.5} \\ & Y\left( x \right)=21.77\ln \frac{12}{5.5} \end{align}$ $\ln \frac{12}{5.5}\approx 0.78$. Therefore, $\begin{align} & Y\left( x \right)\approx 21.77\times 0.78 \\ & \approx 16.9 \end{align}$ Plot the following points on the graph: $\begin{matrix} x & y \\ 15 & 22 \\ 25 & 33 \\ 5.5 & 0 \\ 10 & 13 \\ 12 & 16.9 \\ \end{matrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.