Answer
$$2^{\frac{7}{12}}x^{\frac{7}{12}}+5\cdot \:2^{\frac{5}{6}}x^{\frac{5}{6}}$$
Work Step by Step
We know that this expression is the same as telling us to multiply $f(x)$ and $g(x)$. Doing this, we find:
$$ \left(2^{\frac{1}{4}}x^{\frac{1}{4}}+5\cdot \:2^{\frac{1}{2}}x^{\frac{1}{2}}\right)\left(2^{\frac{1}{3}}x^{\frac{1}{3}}\right)\\ 2^{\frac{1}{4}}x^{\frac{1}{4}}\left(2^{\frac{1}{3}}x^{\frac{1}{3}}\right)+5\cdot \:2^{\frac{1}{2}}x^{\frac{1}{2}}\left(2^{\frac{1}{3}}x^{\frac{1}{3}}\right)\\ 2^{\frac{7}{12}}x^{\frac{7}{12}}+5\cdot \:2^{\frac{5}{6}}x^{\frac{5}{6}}$$