Answer
$4t$
Work Step by Step
$\bf{\text{Solution Outline:}}$
Use the Distributive Property to simplify the given expression, $
t-\{t-[3t-(2t-t)-t]-4t\}-t
.$
$\bf{\text{Solution Details:}}$
Using the Distributive Property which is given by $a(b+c)=ab+ac,$ the expression above is equivalent to
\begin{array}{l}\require{cancel}
t-\{t-[3t-(2t-t)-t]-4t\}-t
\\\\=
t-\{t-[3t-1(2t)-1(-t)-t]-4t\}-t
\\\\=
t-\{t-[3t-2t+t-t]-4t\}-t
\\\\=
t-\{t-1[3t]-1[-2t]-1[t]-1[-t]-4t\}-t
\\\\=
t-\{t-3t+2t-t+t-4t\}-t
\\\\=
t-1\{t\}-1\{-3t\}-1\{2t\}-1\{-t\}-1\{t\}-1\{-4t\}-t
\\\\=
t-t+3t-2t+t-t+4t-t
\\\\=
4t
.\end{array}