Elementary Algebra

Published by Cengage Learning
ISBN 10: 1285194055
ISBN 13: 978-1-28519-405-9

Chapter 9 - Roots and Radicals - 9.1 - Roots and Radicals - Concept Quiz 9.1 - Page 401: 10

Answer

True

Work Step by Step

To simplify the expression, we will first use the rule $\sqrt \frac{a}{b}=\frac{\sqrt a}{\sqrt b}$: $\sqrt {\frac{1}{4}}+\sqrt[3] \frac{1}{8}+\sqrt \frac{4}{9}$ =$\frac{\sqrt 1}{\sqrt 4}+\frac{\sqrt[3] 1}{\sqrt[3] 8}+\frac{\sqrt 4}{\sqrt 9}$ =$\frac{\sqrt 1}{\sqrt 4}+\frac{\sqrt[3] 1}{\sqrt[3] {2^{3}}}+\frac{\sqrt 4}{\sqrt 9}$ Next, we simplify the expression: =$\frac{\sqrt 1}{\sqrt 4}+\frac{\sqrt[3] 1}{\sqrt[3] {2^{3}}}+\frac{\sqrt 4}{\sqrt 9}$ =$\frac{1}{2}+\frac{1}{2}+\frac{2}{3}$ Then, we take LCM of the denominators of the fractions to add the fractions. Upon observation, the LCM is found to be 6: =$\frac{1}{2}+\frac{1}{2}+\frac{2}{3}$ =$\frac{3(1)+3(1)+2(2)}{6}$ =$\frac{3+3+4}{6}$ =$\frac{10}{6}$ =$\frac{5}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.