Elementary Algebra

Published by Cengage Learning
ISBN 10: 1285194055
ISBN 13: 978-1-28519-405-9

Chapter 7 - Algebraic Fractions - 7.6 - More Fractional Equations and Problem Solving - Problem Set 7.6 - Page 314: 9

Answer

{$\frac{2}{3}$}

Work Step by Step

First, we find the LCM of the denominators of the two fractions on the left-hand side of the equation in order to develop a single fraction: $\frac{x}{x-2}+\frac{4}{x+2}=1$ $\frac{x(x+2)+4(x-2)}{(x-2)(x+2)}=1$ $\frac{x^{2}+2x+4x-8}{(x-2)(x+2)}=1$ $\frac{x^{2}+6x-8}{(x-2)(x+2)}=1$ Now, we cross multiply the two sides: $\frac{x^{2}+6x-8}{(x-2)(x+2)}=1$ $x^{2}+6x-8=(x-2)(x+2)$ $x^{2}+6x-8=x^{2}-2^{2}$ $x^{2}+6x-8=x^{2}-4$ $6x-8=-4$ $6x=-4+8$ $6x=4$ $x=\frac{4}{6}$ $x=\frac{2}{3}$ Therefore, the solution set is {$\frac{2}{3}$}.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.