Answer
$x^2-10x+25=(x-5)^2$
Work Step by Step
RECALL:
Perfect square trinomials can be factored using the following formulas:
(i) $a^2+2ab+b^2=(a+b)^2$
(ii) $a^2-2ab+b^2=(a-b)^2$
The given perfect square trinomial can be written as:
$x^2-2(x)(5)+5^2$
Factor this perfect square trinomial using formula (ii) above where $a=x$ and $b=5$ to obtain:
$x^2-2(x)(5)+5^2=(x-5)^2$
Therefore,
$x^2-10x+25=(x-5)^2$